
Analysis Data Waveform and Orbit Theory
Modbus Register Map

Integration

Header structure is the following:

Analysis Data Waveform
and Orbit Theory

https://library.machinesaver.com/uploads/images/gallery/2023-06/FU2YF9fB2zmPh1gH-image001.png
https://library.machinesaver.com/uploads/images/gallery/2023-06/tTYXT23RkIgnqwsY-image002.png

First register contains signature
Second register contains type
Third register contains data array size
Fourth register contains data array CRC
Fifth register contains groove array size
Sixth register contains groove array CRC
Seventh register is reserved
Eight register contains CRC of the header

In your example:

4660 = 0x1234 is the correct signature

6 is type

3600 is the size of the data array

54064 is CRC of the 3600-sample data array

0 is the size of the groove indexes array (this indicates that you did not have any notches)

65535 is CRC of the groove array(which you do not need to calculate in your case because you
did not have any notches)

0 is just a reserved member of header, we do not use it for now. We allocated it for later in case if
we ever need to place something else in header.

9987 is crc of the header.

Above is a computer-generated signal in excel.

I used it to check whether our ideas with notch functionality would work.

This describes the process of getting from two sinewaves to an orbit signal.

I replaced 1800 Ch A data clip samples with 1800 samples of perfect sin wave.

Likewise, 1800 Ch B data clip samples with 1800 samples of perfect cos wave.

Orbit Plots: DataClipSamples.xlsx

https://library.machinesaver.com/attachments/12

The computer-generated signal created perfect looking orbit, so we could test our notch
functionality.

As for combining two data charts into orbit, you simply set MODBUS CHANNEL NUMBER REGISTER
40033 to MODBUS_CHANNELS_AB command.

This will capture data from both channels.

Data array size will be 3600 samples.

First 1800 samples are ch A samples.

Next 1800 samples are ch B samples.

So, it is easy to separate them.

Then you just plot channel A against channel B and you will get your orbit.

Modbus Register Map
About these Registers:
DEVICE_ID / REMOTE_TERMINAL_UNIT (RTU) / SLAVE_ID:

Each sensor on a single multi-drop bus line must have a unique DEVICE_ID / RTU / SLAVE_ID:
By Default the DEVICE_ID / RTU / SLAVE_ID is the LAST 2 DIGITS OF THE SENSORS
SERIAL NUMBER
The serial number (and therefore, the RTU number) can be found on the side of the
TwinProx on the white label.

INDEXING:

Note that the listed registers below are considered 0-Indexed (the first value starts
at 0)
Some Modbus masters will need to shift all the values up by one value if their
master recognized the first Modbus value at 1 (known as 1-indexed).

SERIAL COMMUNICATION SETTINGS:

Baudrate: 115200
Parity: None
Handshakes: None
Data Bits: 8
Stop Bits: 1

FUNCTION CODES:

Register
Address

Number
of
Registers

Register
Contents
Description

Range Default
Value Scale Unit Data

Type
Read /
Write Notes

40176 1
Channel
A Gap /
Distance

0 to 105 n/a value/100 mils
16-bit
Unsigned
Integer

R

40177 1
Channel
B Gap /
Distance

0 to 105 n/a value/100 mils
16-bit
Unsigned
Integer

R

40178 1
Channel
A
Displacement

0 to 105 n/a value/100 mils Pk-
Pk

16-bit
Unsigned
Integer

R

40179 1
Channel
B
Displacement

0 to 105 n/a value/100 mils Pk-
Pk

16-bit
Unsigned
Integer

 R

The function codes supported by TwinProx Sensor are:

03 - (0x03) READ MULTIPLE HOLDING REGISTERS
16 - (0x10) WRITE MULTIPLE HOLDING REGISTERS

--- If you want to read or write to just a single register, you can do this by setting the
length/offset/number of registers to 1 ---

Endianness:

The TwinProx sensor uses the Big Endian memory allocation paradigm.

In computing, endianness is the order or sequence of bytes of a word of digital data in
computer memory. Endianness is primarily expressed as big-endian (BE) or little-endian (
LE). A big-endian system stores the most significant byte of a word at the smallest memory
address and the least significant byte at the largest. A little-endian system, in contrast,
stores the least-significant byte at the smallest address.

Modbus Register Map

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Word_(data_type)
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Most_significant_byte
https://en.wikipedia.org/wiki/Memory_address
https://en.wikipedia.org/wiki/Memory_address
https://en.wikipedia.org/wiki/Least_significant_byte

40049 1 DDC_START_SAMPLEn/a n/a sample
index

16-bit
Unsigned
Integer

R/W

This
register
will
start
by
reporting
a
0
when
read
(indicating
the
0th
sample
is
in
register
50,
ready
to
be
read).
After
successfully
reading
the
data
clip
sample
in
register
171,
this
register
should
read
122
(indicating
the
122nd
sample
is
in
register
50,
ready
to
be
read).

40050-
40171 122 DDC_Samplesn/a n/a

16-bit
Unsigned
Integer

R

Block
reads
of
registers
49
-
171
repeatedly
until
SAMPLES
collected
equal
1800.

40171 1 Auto_Reload_DDC_Chunkn/a n/a
16-bit
Unsigned
Integer

R

Each
time
register
171
is
successfully
read
by
a
Modbus
Master.
Register
49
is
updated
to
reflect
the
index
of
the
sample
in
register
50
and
the
next
set
of
DDC
Samples
is
loaded
into
registers
50
-
171.

